MAGIC Summary

Preterm infants are vulnerable to brain injury. Gamma-aminobutyric acid (GABA) is a vital neurotransmitter that has an important developmental role and can potentially be altered due to brain injury in the preterm infant. MAGIC study (Magnetic Resonance for GABA In Preterm Brain and Cerebellum) is a pilot study investigating feasibility and reliability of novel magnetic resonance spectroscopy (MRS) techniques to quantify GABA concentrations in the developing brain in very low birth weight (<1500 grams) preterm infants.

The study includes both preterm imaging (<37 weeks corrected age) as well as follow up studies at term equivalent age (TEA), investigating any trends in regional and temporal concentrations of GABA between the two scans and its association with postnatal events during the extrauterine 3rd trimester duration before reaching term corrected age. This prospective study is currently in progress and supported by funding from CTSI-CN at CNHS.

Blog Article Figure
The production, release, action, and degradation of GABA at a stereotyped GABAergic synapse

GABAergic means "pertaining to or affecting the neurotransmitter GABA". A synapse is GABAergic if it uses GABA as its neurotransmitter. A GABAergic neuron produces GABA. A substance is GABAergic if it produces its effects via interactions with the GABA system, such as by stimulating or blocking neurotransmission. A GABAergic or GABAergic agent is any chemical that modifies the effects of GABA in the body or brain. Some different classes of GABAergic drugs include the following: GABA receptor agonists, GABA receptor antagonists, and GABA reuptake inhibitors. Examples of types include gabapentinoids and GABA analogues.

GABAergic neurons play an inhibitory role and synaptically release the neurotransmitter GABA in order to regulate the firing rate of target neurons.